Systèmes d'équations linéaires (SEL)

Un SEL de m équations et n inconnues est une collection d'équations linéaires aux inconnues x_1, \ldots, x_n :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

avec a_{ij} (les coefficients) et b_i (les seconds membres) des nombres réels, pour tout $i=1,\ldots,m$ et $j=1,\ldots,n$.

Théorème $(0-1-\infty)$

Un SEL admet soit...

- aucune solution (système incompatible)
- une unique solution (système compatible)
- une infinité de solutions (système compatible)

Systèmes linéaires : matrice augmentée et opérations élémentaires

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots & & \Rightarrow & \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & & & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{pmatrix} \implies \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

Les opérations élémentaires sur les lignes

- Permuter deux lignes
- Multiplier une ligne par un réel (non-nul)
- lacktriangledown Additionner un multiple réel d'une ligne à une autre ligne $L_i
 ightarrow L_i + \lambda \cdot L_j$

But : mettre la matrice augmentée sous forme échelonnée réduire pour faire apparaître la (les) solution(s) si elles existent.

Matrices échelonnées

Matrice échelonnée :

$$\begin{pmatrix} * & * & * & \cdots & * & * & * \\ 0 & * & * & \cdots & * & * & * \\ 0 & 0 & 0 & \cdots & * & * & * \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$$

Matrice échelonnée réduite :

$$\begin{pmatrix} \mathbf{1} & 0 & * & \cdots & 0 & * & * \\ 0 & \mathbf{1} & * & \cdots & 0 & * & * \\ 0 & 0 & 0 & \cdots & \mathbf{1} & * & * \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$$

Les "*" et "1" sont des pivots.

lls occupent une position-pivot dans une colonne-pivot.

Matrices échelonnées

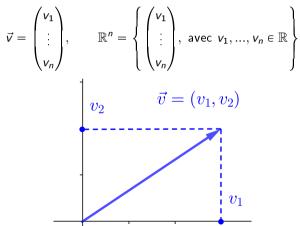
Nous avons vus trois cas en exemple :

"colonne du second membre".

Les pivots donnent des variables principales, les autres donnent des variables libres (paramètres).

Vecteurs de \mathbb{R}^n

Nous regardons une collection de valeurs de n nombres réels $(v_1, v_2, ..., v_n)$ sous la forme d'une matrice à une colonne. On l'appelle un **vecteur de** \mathbb{R}^n , et se représente graphiquement par une flêche



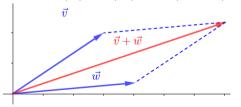
Vecteurs de \mathbb{R}^n

Nous pouvons définir des opérations de bases :

9 Egalité:
$$\vec{v} = \vec{w} \Leftrightarrow v_i = w_i, \forall i = 1, ..., n.$$

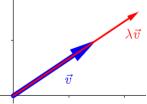
Addition

$$\vec{v} + \vec{w} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{pmatrix} \qquad \lambda \cdot \vec{v} = \lambda \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} \lambda \cdot v_1 \\ \vdots \\ \lambda \cdot v_n \end{pmatrix}$$



Multiplication par un scalaire

$$\lambda \cdot \vec{v} = \lambda \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} \lambda \cdot v_1 \\ \vdots \\ \lambda \cdot v_n \end{pmatrix}$$



Vecteurs de \mathbb{R}^n

Les opérations addition et multiplication scalaire permettent de définir d'autres concepts naturels :

• Vecteur nul de
$$\mathbb{R}^n$$
: $0_{\mathbb{R}^n} \stackrel{\text{def}}{=} \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$

• L'inverse de \vec{v} : $-\vec{v} \stackrel{\text{def}}{=} (-1)\vec{v}$

... et des propriétés algébriques :

$$\mathsf{EV} \ \mathbf{1} - \vec{u} + \vec{v} = \vec{v} + \vec{u}$$

EV 2 -
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

EV 3 -
$$\lambda(\mu\vec{v}) = (\lambda\mu)\vec{v}$$

EV 4 -
$$\lambda(\vec{u} + \vec{v}) = \lambda \vec{v} + \lambda \vec{w}$$

EV 5 -
$$(\lambda + \mu)\vec{v} = \lambda\vec{v} + \mu\vec{v}$$

EV 6 -
$$1 \cdot \vec{v} = \vec{v}$$

EV 7 -
$$0_{\mathbb{R}^n} + \vec{v} = \vec{v}$$

EV 8 -
$$\vec{v} + (-\vec{v}) = 0_{\mathbb{R}^n}$$

Autre propriétés élémentaires :

$$0\cdot \vec{v}=\lambda\cdot 0_{\mathbb{R}^n}=0_{\mathbb{R}^n}.$$

Combinaisons linéaires

Soient $\vec{v}_1, \ldots \vec{v}_k \in \mathbb{R}^n$ et $\lambda_1, \ldots \lambda_k \in \mathbb{R}$. Le vecteur

$$\vec{\mathbf{v}} = \lambda_1 \vec{\mathbf{v}}_1 + \dots \lambda_n \vec{\mathbf{v}}_k \in \mathbb{R}^n$$

est une combinaison linéaire (CL) de $\{\vec{v}_1, \dots \vec{v}_k\}$.

On note

$$span\{\vec{v}_1, \dots \vec{v}_k\}$$
 (on note aussi "Vect" au lieu de "span")

l'ensemble des CL de $\{\vec{v}_1, \ldots \vec{v}_k\}$.

Question: comment déterminer si un vecteur $\vec{v} \in \text{span}\{\vec{v}_1, \dots \vec{v}_n\}$?

Lien avec les systèmes linéaires

Théorème (1.14)

Soient $\vec{a}_1, \ldots, \vec{a}_n, \vec{b} \in \mathbb{R}^m$.

Trouver les coefficients x_1, \ldots, x_n tels que

$$x_1\vec{a}_1 + \dots x_n\vec{a}_n = \vec{b}$$
 (équation vectorielle)

est équivalent à résoudre le SEL associé à la matrice augmentée

$$(\vec{a}_1 \dots \vec{a}_n | \vec{b}) = (A | \vec{b}) = B.$$

Autrement dit,

$$\vec{b} \in span\{\vec{a}_1, \dots, \vec{a}_n\} \Leftrightarrow (\vec{a}_1 \dots \vec{a}_n | \vec{b}) \text{ est compatible.}$$

Critère des pivots par ligne

Théorème (1.15)

Soient $a_1, \ldots, a_n \in \mathbb{R}^m$.

Tout vecteur $\vec{b} \in \mathbb{R}^m$ est une CL de $\{\vec{a}_1, \ldots, \vec{a}_n\}$ si et seulement si la matrice $(\vec{a}_1, \ldots, \vec{a}_n)$ admet une forme échelonnée avec 1

pivot par ligne.

On dit alors que $\{\vec{a}_1,\ldots,\vec{a}_n\}$ engendrent \mathbb{R}^m et on note

$$span\{\vec{a}_1,\ldots,\vec{a}_n\}=\mathbb{R}^m.$$

$$\begin{pmatrix} 1 & -1 & b_1 \\ 0 & 1 & b_2 \end{pmatrix} \text{ est compatible}$$
pour tout $\vec{b} = (b_1, b_2)$

$$\begin{pmatrix} 1 & -3 & b_1 \\ 0 & 0 & b_2 \end{pmatrix} \text{ n'est pas compatible}$$
pour tout $\vec{b} = (b_1, b_2)$ (slt si $b_2 = 0$)

Forme matricielle

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases} \implies \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$
$$\implies A\vec{x} = \vec{b}$$

Exemple

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 9 \\ 0 & 1 & -2 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \implies \begin{cases} x_1 = 7b_1 - 3b_2 - 10b_3 \\ x_2 = -4b_1 + 2b_2 + 7b_3 \\ x_3 = -2b_1 + b_2 + 3b_3 \end{cases}$$

Théorème (1.18)

Soit $A \in M_{m \times n}(\mathbb{R})$. Alors les propositions suivantes sont équivalentes.

- $\forall \vec{b} \in \mathbb{R}^m$, l'équation $A\vec{x} = \vec{b}$ admet au moins une solution $x \in \mathbb{R}^n$ (système compatible).

- La forme échelonnée réduite de A admet au moins 1 pivot par ligne.

La condition "1 pivot par ligne" est nécessaire, car elle évite des lignes nulles qui peuvent rendre le système incompatible.

Indépendance linéaire

Une famille de vecteurs $\{\vec{v}_1, \dots \vec{v}_k\}$ est linéairement indépendante (ou libre) si aucun de ses vecteur est une combinaison linéaire des autres. Dans le cas contraire, on dit que la famille est liée.

Théorème

 $\{\vec{v}_1, \dots \vec{v}_k\}$ est libre si et seulement si

$$\lambda_1 \vec{v}_1 + \cdots + \lambda_k \vec{v}_k = 0_{\mathbb{R}^n} \implies \lambda_i = 0, \ \forall 1 \leqslant i \leqslant k.$$

Autrement dit, l'unique solution du système matriciel

$$\begin{pmatrix} \vec{v}_1 & \dots & \vec{v}_k & | & 0_{\mathbb{R}^n} \end{pmatrix}$$

est le vecteur nul.

Indépendance linéaire

Théorème d'équivalence des pivots par colonnes

Soit $A \in M_{m \times n}(\mathbb{R})$. Alors les propositions suivantes sont équivalentes.

- L'équation $A\vec{x} = 0_{\mathbb{R}^m}$ admet comme unique solution le vecteur nul $0_{\mathbb{R}^n}$.
- Les colonnes de A sont linéairement indépendantes.
- La forme échelonnée réduite de A admet au moins 1 pivot par colonne.

La condition "1 pivot par colonne" est nécessaire, car elle évite des variables libres nulles qui donnent une infinité de solutions.

Représentation des solutions d'un SEL

Tous système compatible $A\vec{x}=\vec{b}$ admet un ensemble de solutions de la forme

$$S = \vec{p} + \text{span}\{\vec{v}_1, \dots, \vec{v}_k\}$$

οù

- \vec{p} est une solution particulière du système non-homogène $A\vec{x} = \vec{b}$
- span $\{\vec{v}_1,\ldots,\vec{v}_k\}$ est l'ensemble des solutions du système homogène $A\vec{x}=\vec{0}$.

L'ensemble span $\{\vec{v}_1,\ldots,\vec{v}_k\}$ (que nous verrons plus tard somme un sous-espace vectoriel appelé noyau de A) correspond (dans \mathbb{R}^2 ou \mathbb{R}^3) à une droite ou un plan passant par l'origine. L'addition par \vec{p} correspond à une translation.